Linear Maps in Minimal Free Resolutions of Stanley-Reisner Rings

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Buchsbaum Stanley–reisner Rings with Minimal Multiplicity

In this paper, we study non-Cohen–Macaulay Buchsbaum Stanley– Reisner rings with linear free resolution. In particular, for given integers c, d, q with c ≥ 1, 2 ≤ q ≤ d, we give an upper bound hc,d,q on the dimension of the unique non-vanishing homology H̃q−2(∆; k) of a d-dimensional Buchsbaum ring k[∆] with q-linear resolution and codimension c. Also, we discuss about existence for such Buchsba...

متن کامل

Betti numbers of Stanley–Reisner rings with pure resolutions

Let ∆ be simplicial complex and let k[∆] denote the Stanley– Reisner ring corresponding to ∆. Suppose that k[∆] has a pure free resolution. Then we describe the Betti numbers and the Hilbert– Samuel multiplicity of k[∆] in terms of the h–vector of ∆. As an application, we derive a linear equation system and some inequalities for the components of the h–vector of the clique complex of an arbitra...

متن کامل

Combinatorial Invariance of Stanley-reisner Rings

In this short note we show that Stanley-Reisner rings of simplicial complexes, which have had a ‘dramatic application’ in combinatorics [2, p. 41] possess a rigidity property in the sense that they determine their underlying simplicial complexes. For the readers convenience we recall the notion of a Stanley-Reisner ring (for more information the reader is referred to [1, Ch. 5]). Let V be a fin...

متن کامل

Higher Stanley–Reisner rings and toric residues

We give a purely algebraic proof of the hypersurface case of the Toric Residue Mirror Conjecture recently proposed by Batyrev and Materov.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2019

ISSN: 2227-7390

DOI: 10.3390/math7070605